fbpx

Kable Bezhalogenowe i przewody bezpieczeństwa

Print Friendly, PDF & Email

Kable bezhalogenowe to przewody, do których produkcji nie wykorzystano pierwiastków, takich jak chlor, fluor, brom czy jod. Dla kabli i przewodów fluor i chlor mają znaczenie jako atomy w molekułach tworzyw sztucznych, np. fluorowe tworzywa sztuczne lub PVC; brom występuje jako składnik zespołów chroniących przed płomieniami. Dlaczego więc warto inwestować właśnie w przewody bezhalogenowe? Jako wieloletni producent kabli różnego rodzaju odpowiadamy na to pytanie w precyzyjny i obszerny sposób.

Kable bezhalogenowe i halogenowe – różnice zachowania w przypadku pożaru

Zachowanie się kabli i przewodów w instalacjach budynku, ale także w urządzeniach sterowniczych, ma duże znaczenie. Niezależnie od tego, czy wybierasz przewód instalacyjny, czy kabel sterowniczy – postaw na wytrzymałe rozwiązania spełniające aktualne normy. Szczególnie ważne są następujące czynniki:

  • zachowanie podczas działania płomieni, tzn. palność, przenoszenie pożaru,
  • szkody w następstwie powstawania gazów korozyjnych i toksycznych,
  • podtrzymywanie powstawania dymu (zaciemnianie dróg ewakuacyjnych, uniemożliwianie akcji gaśniczych).

Przewody elektryczne z materiałów zawierających halogeny, to przede wszystkim materiały z chlorem w łańcuchach molekuł: polichlorek winylu (PVC), chloroprenkauczuk (CR), chlorowany polietylen (CM), chlorosulfonowy polietylen (CSM) i z węglowodorami fluoru:

  • politetrafluoroetylen (PTFE),
  • kopolimer tetrafluoroetylenu i heksafluoropropylenu (FEP),
  • kopolimer tetra-fluor-etylenu i perfluorowanego winyleteru (PFA).

Powoduje to uwalniające się w przypadku pożaru składniki molekuł chloru i fluoru, które utrudniają dopływ tlenu do miejsca pożaru i przez to duszą płomienie.

Duża wada tych materiałów polega na tym, że uwalniające się atomy fluoru lub chloru wiążą się z wodorem z rozkładanego tworzywa sztucznego, lub z otaczającego powietrza w chlorowodór czy fluorowodór. Te wiązania są bardzo korozyjne i toksyczne. W następstwie tego szkody spowodowane korozją są często wyższe od szkód spowodowanych samym pożarem.

Kable bezhalogenowe nie zawierają halogenów, tzn. materiały izolacyjne i opony zewnętrzne tych kabli składają się z polimerów na bazie czystych węglowodorów. Podczas spalania tego rodzaju materiałów nie powstają żadne gazy korozyjne i toksyczne, tylko para wodna i dwutlenek węgla. Jest to główny powód, dla którego zaleca się inwestycję w przewody sterownicze bezhalogenowe i potencjalną redukcję występowania toksyn podczas pożaru.

Bezhalogenowe są polimery takie jak polietylen (PE) lub polipropylen (PP). Materiały te są jednak łatwopalne i nie gaszą się same. Bezhalogenowe kable dla wymogów bezpieczeństwa muszą być wykonane w wersji ciężkopalnej i samogasnącej. Odbywa się to poprzez użycie mieszanek specjalnych polimerów, które zawierają istotny procent środków chroniących przed płomieniami.

Tego rodzaju środki chroniące przed płomieniami składają się przykładowo z wodorotlenku aluminium (Aluminiumhydroxid), który podczas ogrzewania poprzez oddzielanie wody krystalizacyjnej z jednej strony ochładza miejsce pożaru, a z drugiej strony poprzez uwalniającą się parę wodną uniemożliwia dopływ tlenu i dusi płomienie. Dzięki zastosowaniu dodatkowo taśm wzmacniających i przędzy wypełniającej z tkaniny szklanej, miki i podobnych materiałów można dopasować części osprzętu kablowego do realizacji funkcji, np. E 90. Warto zaznaczyć w tym miejscu, że każdy kabel bezhalogenowy dostępny w ofercie HELUKABEL  jest odpowiednio wzmocniony i zabezpieczony.

Zastosowanie przewodów bezhalogenowych

Zaleca się stosowanie bezhalogenowych kabli i przewodów bezpieczeństwa w budynkach ze skupiskami ludzi lub tam, gdzie należy chronić majątek o znacznej wartości, jak:

  • szpitale, lotniska, domy towarowe, wieżowce, hotele, teatry, kina, szkoły itd.,
  • instalacje przeciwpożarowe, instalacje alarmowe, wentylacyjne, schody ruchome, windy, oświetlenie bezpieczeństwa, sale operacyjne i stacje intensywnej opieki medycznej,
  • metro i inne instalacje kolejowe,
  • urządzenia do przetwarzania danych,
  • elektrownie i zakłady przemysłowe o znacznej wartości majątkowej oraz dużym potencjale zagrożenia,
  • kopalnie,
  • stocznie,
  • instalacje awaryjnego zasilania prądem.

Bezhalogenowe przewody bezpieczeństwa HELUKABEL i ich zalety

Kable bezhalogenowe bezpieczeństwa mają sporo cech, które mają kluczowe znaczenie w przypadku kryzysowych sytuacji i nie tylko. Do ich zalet zaliczymy m.in.:
odporność na płomienie i trudnopalność, przez co nie przenoszą płomieni w przypadku pożaru,

  • bezhalogenowość; nie powstają żadne gazy korozyjne,
  • podczas palenia kabli bezhalogenowych powstaje mało dymu,
  • znacznie mniejsze zagrożenie przez toksyczne gazy pożarowe,
  • małe obciążenie pożarowe,
  • podczas działania płomieni przedłużenie bezpiecznego działania funkcji elektrycznych,
  • podtrzymywanie izolacji przez przynajmniej 30 minut czy 180 minut przy działaniu płomieni przy 800°C,
  • nadają się do zasilania systemów bezpieczeństwa do 180 minut,
  • odporność na promieniowanie do 200×106 cJ/kg (200 Mrad).

Własności te można osiągnąć poprzez zastosowanie elastycznego, bezhalogenowego materiału bazowego –Aluminiumhydroxyd (wodorotlenek aluminium) Al(OH)3.

Wartości obciążalności pożarowej (ciepło spalania)

Podczas projektowania budynku duże znaczenie mają kryteria obciążalności pożarowej. Odpowiednie dodatkowe materiały w nowoczesnych kablach i przewodach bezhalogenowych redukują wartości obciążalności pożarowej.

Specyficzne wartości ogrzewania materiałów niemetalicznych dla kabli i przewodów ustalane są wg DIN 51900. Wartości te obliczane są na metr bieżący.

Obecnie obowiązują palne izolacje kabli lub wolno leżące materiały konstrukcyjne klasy B1, o ile powstająca przez to obciążalność pożarowa jest rozłożona możliwie najbardziej równomiernie i wynosi ≤ 7 kWh/m².

Przeliczenie wartości:
1 MJ/m² ≙ 0,278 2 kWh/m
1 kWh/m² ≙ 3,6 2 MJ/m

Postanowienia

Zgodnie z DIN VDE 0108 załącznik 1:

łączna obciążalność pożarowa przewodów może wynosić do 14 kWh na m² powierzchni, jeśli zastosowane zostaną wyłącznie przewody bezhalogenowe z polepszoną opcją zachowania się w przypadku pożaru.

Jeśli zastosowane zostaną kable i przewody z PVC, to obciążalność pożarowa może wynosić tylko 7 kWh na m².

Testy

Własności bezhalogenowych kabli bezpieczeństwa są podane w kontrolach norm wg DIN VDE.

Zachowanie w przypadku pożaru

Wg DIN VDE 0472 cz. 804, testowane metodą A, testowane metodą B i C.

Testowanie metodą A – sprawdzanie poszczególnych kabli ≙ IEC 60332-2

Próbka kabla 600 mm, zwisająca pionowo. Palnik gazu (∅ 8 mm) skierowany jest na próbkę pod kątem 45° ok. 100 mm od dolnego końca. Działanie płomieni maximum 20 s.

Test wypada pozytywnie, jeśli próbka się nie zapaliła lub powstałe płomienie zgasły same, a najbardziej oddalone uszkodzenie spowodowane przez pożar nie sięgnęło górnego końca próbki.

Testowanie metodą B – sprawdzanie poszczególnych kabli ≙ IEC 60332-1, HD 405.1, EN 50265-2-1, DIN VDE 042 cz. 265-2-1

Próbka kabla  600 mm, zwisająca pionowo. Palnik gazu (∅ 8 mm) skierowany jest na próbkę pod kątem 45° ok. 100 mm od dolnego końca. Działanie płomieni w zależności od wagi kabla, 1-2 minuty.

Test wypada pozytywnie, jeśli próbka się nie zapaliła lub powstałe płomienie zgasły same, a najbardziej oddalone uszkodzenie spowodowane przez pożar nie sięgnęło górnego końca próbki.

Testowanie metodą C – sprawdzanie poszczególnych wiązek kabli ≙ IEC 60332-3, HD 405.3, EN 50266-2, DIN VDE 0482 cz. 2

Próbki  kabla 360 cm, leżące obok siebie na oprawie testowej w kształcie drabiny, która stoi pionowo w piecu do wypalania z odstępem 150 mm. Płomienie na wysokości 60 cm nad próbką kabla, o temperaturze ok. 800°C, za pomocą palnika o szerokości ok. 250 mm. Czas działania wynosi 20 minut.

Test wypada pozytywnie, jeśli powstałe płomienie zgasły same, a najbardziej oddalone uszkodzenie spowodowane przez pożar nie sięgnęło górnego końca próbki.

Korozyjność gazów pożarowych

Wg DIN VDE 0472 cz. 813, IEC 60754-2 i HD 602, DIN VDE0482 cz. 267, EN 50267-2-2

Materiały w piecu do spalania, spalane są w temperaturze od 750°C do 800°C. Gazy pożarowe przewodzone są przez płuczkę gazową laboratoryjną.

Test się powiódł, jeśli mierzona wartość pH ≥ 4,3, a elektryczna zdolność przewodzenia ≤ 100 µS.cm-1.

W tym teście wypadają wszystkie niepożądane składniki w materiałach jak wszystkie halogeny, siarka i azot.

Podtrzymanie izolacji FE podczas bezpośredniego działania płomieni

Wg DIN VDE 0472 cz. 814 = IEC 60331

Próbka kabla 1200 mm umieszczona poziomo 75 mm nad palnikiem. Na zabezpieczenie 3 A przyłożone napięcie pomiędzy grupami żył. Płomienie palnika należy tak wyregulować, żeby temperatura przy kablu wynosiła (800±50°C). Zmierzyć czas do wyłączenia zabezpieczenia.

Napięcie testu 400 V dla kabla i przewodu energetycznego

Napięcie testu 110 V dla kabla i przewodu teletechnicznego

Test wypada pozytywnie, jeśli podczas czasu testu 20 lub 180 minut nie wyzwala się żadne zabezpieczenie (3 A).

Bezhalogenowość

Wg DIN VDE 0472 cz. 815, IEC 60754-1,

DIN VDE 0482 cz. 267 i EN 50267-2-1

Test korozyjności gazów pożarowych przeprowadzany jest na próbkach materiału, nie na kompletnych wzorach kabli. Dowiedzenie obecności halogenów w kablach odbywa się poprzez analizę chemiczną.

Materiały z zawartością:

≤ 0,2% chloru i
≤ 0,1% fluoru

uważa się jeszcze za przewody bezhalogenowe.

Gęstość dymu

Wg DIN VDE 0472 cz. 816 = IEC 601034-1 i IEC 601034-;

EN 50268-1/EN 50268-2, HD 606 i BS 7622 cz. 1 i 2

Test gęstości dymu przeprowadzany jest na pojedynczym, poziomo ułożonym odcinku kabla w pomieszczeniu w kształcie kostki o długości krawędzi 3 m. Mierzona fotometrycznie absorpcja światła jest miarą gęstości dymu.

Test wypada pozytywnie, jeśli w przeciągu 40 minut nie występuje osłabienie światła i osiągnięte zostają następujące wartości transmisji światła.

Ø kabla transmisja światła

> 3-5 mm 40%
> 5-10 mm 50%
> 10-20 mm 60%
> 20-40 mm 60%
> 40 mm 70%

Podtrzymywanie funkcji elektrycznych instalacji kablowych

Wg DIN 4102 cz. 12 (kontrola systemu)

DIN 4102 cz. 12 opisuje podtrzymywanie funkcji elektrycznych instalacji kablowych w przypadku pożaru.

Instalacje kablowe

Jako instalacje kablowe określa się kable energetyczne, izolowane przewody energetyczne, kable i przewody instalacyjne do instalacji teletechnicznych, instalacji przetwarzania informacji, rozdzielnic szynowych włącznie z przynależnymi kanałami, powłokami i okładzinami, elementami łączeniowymi, uchwytami.

Podtrzymywanie funkcji

Wg DIN VDE 4102 cz. 12

Opcja podtrzymywania funkcji jest wtedy, kiedy w instalacji kablowej podczas testu pożarowego nie występuje zwarcie i nie występuje żadna przerwa w przepływie prądu w sprawdzanych instalacjach. Według tej normy sprawdzane są kable i przewody bezpieczeństwa zawsze razem z kablowymi instalacjami nośnymi, uchwytami i umocnieniami.

Uwaga: Zdefiniowane tutaj podtrzymywanie funkcji nie ma żadnego związku z podtrzymywaniem izolacji przy działaniu płomieni wg DIN VDE 0472 cz. 814.

Test

W tym teście pożarowym sprawdzana jest w dużym pomieszczeniu pożarowym kompletna instalacja kablowa, tzn. kable i przewody włącznie z opaskami zaciskowymi, uchwytami, kołkami itd.

Napięcie testu dla przewodów energetycznych: 380 V

Napięcie testu dla kabli teletechnicznych: 110 V

Obciążenie prądu: 3A

Pomieszczenie pożarowe zostaje ogrzane wg ETK

(krzywa jednostki temperatury)

Rozróżnia się 3 klasy czasu testu:

  • E 30 dla podtrzymania funkcji >= 30 minut
  • E 60 dla podtrzymania funkcji >= 60 minut
  • E 90 dla podtrzymania funkcji >= 90 minut

Temperatura w pomieszczeniu pożarowym rośnie:

  • przy E 30 do ok. 820°C
  • przy E 60 do ok. 870°C
  • przy E 90 do ok. 980°C

Po pomyślnym teście nadaje się systemowi odpowiednio klasę podtrzymywania funkcji E 30, E 60 lub E 90.

Uwaga: Wyspecyfikowana w normach DIN VDE klasa E 60 nie ma obecnie zastosowania ze względów ekonomicznych i technicznych.

Do pobrania:

Nasi PartnerzySklep partnerski